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Abstract

This work investigates relationships among the convergence rates
for the variable z, for the multiplier A and for the pair (z,) in SQP
methods for equality constrained optimization. Key contributions are:
if the convergence in (2,A) and also in z is g-superlinear, then the
convergence in A is either g-superlinear or g-sublinear with unbounded
q1 factor, and if the convergence in (z,)) is g-superlinear, then the
convergence in z is at least two-step g-superlinear. It is noted that a
theorem of Fontecilla, Steihaug and Tapia leads to a characterization
result which is potentially more useful than the Boggs-Tolle-Wang
characterization. Finally, two different conditions that guarantee g¢-
superlinear convergence in z, A and (z,)) for an SQP method are
derived.
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1 Introduction

In this work we will be concerned with the equality constrained optimization
problem

minimize f(z)

subject to hi(z) =0, 1=1,2,...,m

(1.1)

where f, h; are nonlinear functions defined from IR" into IR.
We denote by h(z) the vector whose components are h;(z),i=1,...,m.
The Lagrangian function associated with problem (1.1) is the function

Uz, \) = f(z)+ AT h(z) (1.2)

where A = (Ay, ..., A\ )7 is called the vector of Lagrange multipliers or simply
the Lagrange multiplier. The augmented Lagrangian function associated with
problem (1.1) is the function

L@, X;p) = f(&) + XTh(@) + 5 p h(a)Th(z) (p20).  (13)

The algorithm we are interested in is the successive quadratic programming
(SQP) Lagrangian quasi-Newton method:

ALGORITHM (SQP Method):

For k =0,1,..., until convergence do

Tkl = Tk + Sk (1.4)
Aks1 = e + AXg (1.5)
Bit1 = B(xk, sk, Ak+1, B) (1.6)

where s, and A); are the solution and the multiplier associated with the
solution of the quadratic program

minimize Vg l(zg, \i)Ts + % sTBys

subject to Vh(zi)Ts + h(zy) = 0. (1.7)

The matrix Bjy1 is interpreted as an approximation to V20(zky1, Aky1).
When the augmented Lagrangian is substituted for the Lagrangian in the
SQP method we call the resulting algorithm the SQP augmented Lagrangian



quasi-Newton method. For further details on these various SQP formulations
see Appendix A of Tapia (1988).

We begin our study with a review of terminology concerning convergence
rates for iterative methods. For the most part we follow Chapter 9 of Ortega
and Rheinboldt (1970). However, our definition of r-convergence is essentially
that of Dennis and Schnabel (1983), which is known to be equivalent to the
notion considered by Ortega and Rheinboldt (1970).

Let {zx} C IR" be a convergent sequence with limit z, and assume that

zx # z. for all k. Consider a vector norm || - || on IR™. for p € [1,0) the
quantities

4 = m”xk+l — 2.l

Tk ek — ol

are called the g, factors of the sequence {z)} with respect to the norm || - ||.

We define the g-order of convergence of {zx} to be inf{p : ¢, = c0}. The
q1 factor will be of particular interest to us. If ¢; < 1, then the convergence is
said to be g-linear; while if ¢; > 1, then the convergence is said to g-sublinear.
Clearly the ideal situation is when ¢; = 0 and in this case the convergence
is said to be g-superlinear. The least ideal case is when ¢; = +0c0. We will
refer to this convergence as g-sublinear with unbounded ¢, factor.

Suppose that we have {b;} converging to zero and such that ||zx—z.|| < b
for all k. If the sequence {b;} possesses a particular g-convergence property,
then the sequence {x;} is said to possess the corresponding r-convergence
property.

If for each k the subsequence zx, Tkt j, Tr42;, - . - displays a particular con-
vergence behavior, then we say that the original sequence z1, 5, ... has this
J-step convergence behavior.

It is of interest to observe that r-convergence properties are norm inde-
pendent; so are the notions of g-order, g-superlinear and g-sublinear with
unbounded ¢, factor. However, the notions of g-linear and g-sublinear are
norm dependent.

Convergence of order 2 is said to be quadratic and that of order 3 is said
to be cubic. Unfortunately this standard terminology is such that a g-order
of 1 does not imply g¢-linear convergence.

The SQP Lagrangian method for equality constrained optimization is
a part of the optimization theory folklore. It was certainly known to re-
searchers in the calculus of variations in the early 1900’s. The fact that the



SQP Lagrangian Newton method, i.e. By = V2{(zx, \), is ¢-quadratically
convergent in the pair (z, A) is also a part of the optimization folklore. For a
proof see Tapia (1977). The SQP Lagrangian Newton method for problems
with inequality constraints is usually credited to Wilson (1963).

The convergence of special SQP secant methods has been investigated by
many authors. The first was probably Garcia-Palomares and Mangasarian
(1976). They posed an SQP secant method and proved various r-convergence
results in (z, A) under certain assumptions. Han (1976), (1977), Tapia (1977)
and Glad (1979) independently established local and g-superlinear conver-
gence in (z,)) for several SQP secant methods. Boggs, Tolle and Wang
(1982) showed that the convergence in « for the SQP, DFP and BFGS secant
method was g-superlinear assuming that {z;} converged ¢-linearly. They
obtained a characterization of g-superlinear convergence in  also assuming
that {zx} converged g-linearly. Fontecilla, Steihaug and Tapia (1987) es-
tablished g-superlinear convergence in z for the SQP PSB, DFP and BFGS
secant methods and also derived the Boggs-Tolle-Wang characterization of
g-superlinear convergence in z as a special case of a more general character-
ization. These results did not require the assumption that {z;} converged
g-linearly.

When the secant update in question was the DFP or the BFGS update,
all of the above authors were forced to either make the assumption that
the Hessian with respect to z of the Lagrangian at the solution was posi-
tive definite or work with the SQP augmented Lagrangian method with the
penalty constant chosen sufficiently large. Each one of these two alternatives
is somewhat undesirable. The first because the Hessian with respect to x
of the Lagrangian is not in general positive definite at the solution, and the
second because the SQP augmented Lagrangian method is known to be sen-
sitive to the choice of the penalty constant p, and adequate guidelines for
this choice seem to be impossible to develop.

This unfortunate state of affairs motivated Powell (1978) to propose an
ad hoc modification to the SQP Lagrangian BFGS secant method which
compensates for the lack of positive definiteness in the Hessian at the solution.
Assuming convergence, Powell was able to show that his modified SQP BFGS
secant method gave r-superlinear convergence in the variable z.

The dilemma described above, i.e. the lack of positive definiteness of the
Hessian with respect to « of the Lagrangian at the solution, motivated consid-
erable research activity in formulating a BFGS secant method for problem
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(1.1) in the framework of the so-called reduced Hessian methods. In con-
trast to full Hessian methods, the reduced Hessian methods approximate
the Hessian restricted to a proper subspace where it is expected to be posi-
tive definite. For more on reduced Hessian secant methods see Murray and
Wright (1978), Gabay (1982), Coleman and Conn (1984), Nocedal and Over-
ton (1985), Gurwitz (1986), Gilbert (1987), and Byrd and Nocedal (1988).
The theoretical convergence rate that has been obtained for the various re-
duced Hessian BFGS secant methods is two-step g-superlinear convergence
in the variable z.

Fenyes (1987) and Fontecilla (1988) propose full Hessian methods which
have some of the flavor of the reduced Hessian methods.

Recently Tapia (1988) proposed two new classes of SQP secant methods
for problem (1.1). One class consists of SQP Lagrangian secant methods
with a modification in the scale associated with the particular secant update
in question to compensate for the lack of positive definiteness of the Hessian
with respect to z of the Lagrangian. The other class consists of SQP struc-
tured augmented Lagrangian secant methods. From an algorithmic point of
view, these methods possess the flavor of the Powell modified SQP BFGS
secant method. However, Tapia was able to prove that for both methods
the DFP and the BFGS versions of the algorithms are locally convergent
and give g-superlinear convergence in the pair (z, ) and also in the variable
¢ without a positive definite assumption on the Hessian with respect to
of the Lagrangian. Current research activity is attempting to demonstrate
that satisfactory rules exist for choosing the parameter in these methods that
corresponds to the penalty parameter in the Hessian with respect to  of the
augmented Lagrangian.

To our knowledge there are no results in the literature that concern the
g-convergence rate of the multiplier in an SQP method. However, several
recent articles in the literature made various assumptions concerning this
rate. For example, Boggs and Tolle (1985) considered the SQP Lagrangian
BFGS and DFP secant methods. They showed that the convergence in z
was g-superlinear assuming that the convergence in  and A was g-linear and
{z1} satisfied a condition called tangential convergence. This result did not
require the Hessian of the Lagrangian with respect to z to be positive definite
at the solution. Gill, Murray, Saunders and Wright (1986) proposed an SQP
Lagrangian secant method for generating a search direction and determined
the step length from a line-search strategy with an augmented Lagrangian
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as the merit function. They established, under the assumptions that the
convergence in x and in A were g-superlinear and U%U > M > 0 for k
sufficiently large, that eventually their steplength choice would be 1.

Recently Tapia and Whitley (1988) investigated the convergence rate of
the projected Newton method applied to the symmetric eigenvalue problem.
This algorithm can be viewed as the SQP Newton method followed by a
two-norm normalization. They established a g-rate of convergence of 1+ /2
for both the variable z and the multiplier ).

The result of Tapia and Whitley (1988) further motivated and strength-
ened our already strong desire to determine relationships among the conver-
gence rates for (z,A), for z and for A in SQP methods.

Section 2 deals with preliminaries including our notation and assump-
tions. In Section 3 we collect three useful characterization theorems. The
first result is a straightforward application of the well-known Dennis-Moré
characterization. We derive it in a very convenient form which readily lends
itself to applications. The second is the Boggs-Tolle-Wang characterization
and the third is a useful characterization theory which follows directly by
restricting a theorem of Fontecilla, Steihaug and Tapia to the case of SQP.
We maintain that collectively these three theorems offer a powerful tool and
demonstrate this fact by using them to derive some interesting consequences.
Two conditions which guarantee the g-superlinear convergence of the multi-
plier sequence {A;} are included. However, we wish to emphasize that the
main theme of this work is that while the g-superlinear convergence of {\;}
is likely in any given computation, mathematical conditions which assume it
or guarantee it are necessarily restrictive.

In Section 4 we show that the convergence in z is at least two-step g¢-
superlinear whenever the convergence in (z,)) is g-superlinear. In Section
5 we show that if the convergence is (z,)) and z is ¢g-superlinear, then the
convergence in A is either g-superlinear or g-sublinear with unbounded ¢
factor. We consider these two theorems to be key contributions of the paper.
In Section 6 we summarize and present some concluding remarks.



2 Preliminaries

In an effort to simplify our notation and give a cleaner presentation we will
work exclusively with the SQP Lagrangian formulation in the remainder of
this work, i.e., we will effectively choose p = 0 in the augmented Lagrangian.
No loss of generality will result from this simplification as long as we remem-
ber that the requirement that the Hessian of the Lagrangian with respect to
x be positive definite at the solution, can be dealt with by working with the
augmented Lagrangian and choosing p sufficiently large.

Let z. be a local solution of Problem (1.1) with associated multiplier ),.
We will use the notation Vhy = Vh(z}), Vfi = V f(zk), Vh. = Vh(z,) and
A, = V2(z., \). Both the £, vector-norm and the corresponding induced
matrix norm will be denoted by |-|. We will use || - || to denote an arbitrary
but fixed matrix norm.

Throughout this work we make the following assumptions:

Al. The functions f and h have continuous second derivatives in an
open neighborhood D of a local solution z, of problem (1.1) and
these second derivatives are Lipschitz continuous at z,.

A2. Vh, has full rank.
A3. 2TA.z > 0 for all z # 0 satisfying VATz = 0.

A4. For large k the sequence {(zx, Ax)} has been generated by a partic-
ular SQP quasi-Newton method with invertible By. Also {(zx, A\¢)}
converges to (z., A.).

Assumptions Al, A2, and A3 are standard assumptions in the study of
quasi-Newton methods for constrained optimization. Assumption A3 is the
well-known second-order sufficiency condition.

Since we are only concerned with convergence rates, no generality will be
lost and considerable simplicity will be gained by assuming that assumption
A4 holds for all k¥ and from assumptions Al, A2, and A4 that Vk; has full
rank for all k.

The requirement that By be invertible is mild and is effectively implied
by second-order sufficiency for the subproblem (1.7). To see this observe
that if By is positive definite on {5 : VAIn = 0}, then for sufficiently large p



the matrix Bk = B+ pthVhf is positive definite and therefore invertible.
Moreover, the subproblem (1.7) has the same solution using By or Bj. For
more detail see Tapia (1977).

Some of our results will also require that {B;} and {B;'} be bounded.
The requirement that {B;} and {B;'} be bounded is quite mild. In general
if the quasi-Newton update satisfies bounded deterioration, then we have
that {Bi} and {B;'} are bounded if the initial (o, Bo) is close to (@y As).
Moreover, the well-known secant updates Broyden, PSB, DFP and BFGS
all satisfy bounded deterioration. For more details see the argument used
in Broyden, Dennis and Moré (1973) and Theorem 3.1 and 3.2 in Fontecilla,
Steihaug and Tapia (1987).

In our study we will have need to refer to the SQP quasi-Newton method
in its equivalent “diagonalized multiplier method” form

Mesr = (VR By 'Vhi) ™Y (hy — VAT BV f) (2.1)

and
Try1 = T — Bk_lvzf(.’rk, /\k+1) . (22)
For details on this equivalence see Tapia (1977), (1978) or Fontecilla, Steihaug
and Tapia (1987).
In many of our results we will need to relate the quantity Agx4q — A, to
the quantities 441 — ., and zj — z,. The following lemmas are technical

results which accomplish this objective and will be useful tools in the proof
of several of our results.

Lemma 2.1 There exists a sequence of mairices {T'x} such that {I'x} con-
verges to A, and

Tyl — Tx + Bk_thk(’\k+l — /\*) = (I — B,:‘I‘k)(xk — IB*) .
Proof. From (2.2) we can write

Thp1 — T = Tk — T — By [Vol(zg, Aegr) — Vol(zay )]

2k — 20 — BV fi + Vhihigs — Vo — VA
B [Bi(zk — @) = (Vi = Vfo) = Vhe(Aes1 — M)
— (Vhe — VRIA]



- B! {Bk(mk —z)— [ /0 V2 (o, + ton — x*))dt] (o — z.)
_ [ / " V2h(e. + tzk — m*)))\*dt] (2 — ac,.,)}
— B7'Vhi(Akg1 — M)

where the integral of the matrix-valued function is interpreted component-
wise. For more details see Chapter 4 of Dennis and Schnabel (1983). Let
Ty = [y V2f(zy +t(z — z.))dt + [ V2h(z. + t(zi — z.))Audt. Then we have

Tegr — T = By [Bi(zr — @) — Ti(zr — @) — B ' VAe(Aes — M),

or

The1 — Tu + B,:1th()\k+1 — /\*) = (I — Bk‘le)(xk - .’13*) .

By the definition of I'y and the fact that {(zx, A\x)} converges to (z.,\,) we
have {['x} converges to A,. O

Lemma 2.2 We have
Merr = Av = (VR B Vhe) " VAE(T = BE'Ty) (mk — 2.) + O(Jay — 2.]7)]
where {I'y} is as in Lemma 2.1.

Proof. From (2.1) we can write

Metr = A+ (Vhi By 'Vhe) ™ [hi — VAL By 'V bk, Ar))]
= M+ (VA By 'Vhi) ™ {hy = he — VAT BV (k, M)
— Val(z., M)} -

Define I'y by the same formula used in Lemma 2.1 and perform the same
algebra to obtain

Met1 = A+ (VATBIIWA,) { [ / " Vh(z. + 2k — x,,))Tdt] (o) — 2.)
VAT BTy (s — :c,.)} — O = A\).
Hence
Aerr — A = (VR B'Vh) T VRL(I — BTk (zk — z.) + O(|zi — 2.]%)] -
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0O
Consider a; > 0 and b; > 0. We write a; = O(by) if there exists m such
that %": < m for all k. We now use Lemma 2.2 to establish that [Akt1 — Au| =

O(|zx — z.]) whenever {B;} and {B;'} are bounded.

Theorem 2.1 If {Bi} and {B;'} are bounded then |\py1 — Au| = O(|zs —
T.).

Proof. From Lemma 2.2 we have

Meyr — A = (VR B{'Vh) T VAL(I — By 'Ty) (zk — ) + O(|zx — 2.]%)]
(2.3)
From Lemma 3.7 in Fontecilla (1988) we have

(VAL B 'Vh) ™Y < |(VAEVA) VAT ?| Byl .

Since {Bx} is bounded and VA, has full rank, it follows that there exists C,
such that

(VRIBy'Vh)™ Y <O, . (2.4)
Furthermore
((VR{(I — B{'Tw)| = |VAIB;'(By —Ty)|
< |VR{| B 1Bk — Til -

The facts that {B; '} is bounded and {T';} converges to A, lead to

|VRi(I — B7'T})| < Cs (2.5)
for some constant C,.
Ak+1 — A
Combining (2.3), (2.4) and (2.5) we have |—|—k+1—|| < Cs for some
Tl — Ty
constant C3. Therefore |Ary1 — M| = O(|zx — z.]). o

Using Theorem 2.1 we can establish the finiteness of the ¢, factor of the
sequence {xx}.

Corollary 2.1 If {B,} and {B;'} are bounded, then

[@r41 — 2] = O(fx — .]) -

9



Proof. By Lemma 2.1 we have
Tir41 — T — (I — Bk‘ll‘k)(:z:k — :L‘,.,) = —Bk_Ith()\k_H - )\*) . (26)

From Theorem 2.1 and the fact that {B;'} is bounded we have

BI'Whi(Ager — A A — A
| k \4 k( k+1 )l S |Bk_1| |thl| k+1 I
|z — 2. |2k — .|
< G (2.7)
for some constant C;. Furthermore
(= By'T)(ze— )l _ By(By — Tu)(ox — 2.)|
|z — .| |2k — .|

< IBZ' 1Bk — Tyl .
By assumption {B;'} is bounded, hence

|(I = By'Tk)(zx — )]
|z — 2]

<, (2.8)

for some constant C3. Combining (2.6), (2.7), and (2.8) we have

|Tk41 — 2] = Oz — 24]) - O

The following result holds for any sequences {zx} and {\;} no matter
whether they were generated by an SQP quasi-Newton method or not.

Proposition 2.1 If {z;} converges to z. g-superlinearly and {\;} converges
to A, g-superlinearly, then {(zx, A\c)} converges to (z.,\.) q-superlinearly.

Proof. Since g-superlinear convergence is independent of norm, we can work
with the max norm.

Let || - || denote the max norm. By assumption there exist {c;} and {&}
such that

241 — 2l < exllze — .|
Aktr = Aull < El[Ae = Al

and

10



where {c;} and {é} converge to 0. Then

[(@r1, A1) = (@0 A = [[(@kr = Ty Aigr = M|
max{[[ziss — 2o, [[Aesr = A}
< max{eellzr — @], &l — A}
< (max{ck, &}) ||[(zx — z«, A — M) -

It follows that {(zx,Ar)} converges to (., A.) g-superlinearly. ]

3 Fundamental Characterization Theorems
and Consequences

In this section we present three important characterization theorems and then
derive several consequences of these theorems. One of these theorems, the
Boggs-Tolle-Wang characterization, is somewhat well-known. Another one of
these theorems results from a straightforward application of the well-known
Dennis-Moré characterization. We state it in a form which is particularly
convenient. The remainder of the results presented seem to be unknown.

It is straightforward that the SQP method can be viewed as a quasi-
Newton method applied to the nonlinear equations which represent the first-
order necessary conditions for problem (1.1); see Tapia (1977), (1978) for
details. Applications of the Dennis-Moré characterization of ¢-superlinear
convergence for quasi-Newton methods have been used in this context by
numerous authors. We now use the Dennis-Moré characterization to derive
the following characterization.

We write Az for 541 — xx and similarly for AX;.

Theorem 3.1 For an SQP method the following two statements are equiva-
lent:

(i) {(zk, Ae)} converges g-superlinearly to (z., \.).

.. . I(Bk — A*)Al‘k| . |A$k| _
(ii) kll'rg{ Az min | 1, Al ) [ = 0

11



Proof. To start with observe that both properties (i) and (ii) are norm in-
dependent. Hence we may conveniently work with the max norm, which we
denote by || - ||

According to the Dennis-Moré superlinear convergence criterion (see Dennis-
Moré (1974)) we have g-superlinear convergence of the sequence {(z, \¢)} if
and only if

p 1(Be = A)Azy + (Vhe = VhAN] _
koo 1(Azx, A

0 (3.1)

and

_ T
k=0 [[(Azk, A

See equations (129)~(131) of Tapia (1977) for further details. Clearly (3.2)
holds and (3.1) is equivalent to

By - A)Aay]
1 =0. 3.3
EATIEyW] (3:3)

Dividing (3.3) by || Azy|| we see that (3.3) is equivalent to condition (ii). The
Dennis-Moré characterization requires V?¢(z.,\.) to be nonsingular. This
follows from A2 and A3. a
The following is the well-known Boggs-Tolle-Wang characterization. For
a self-contained and short proof see Stoer and Tapia (1987).
Let

(3.2)

Py =1—Vh(Vh{Vh)'VhT. (3.4)

Theorem 3.2 (Boggs-Tolle-Wang). For an SQP method the following two

statements are equivalent:
(1) {zx} converges q-superlinearly to z,.

o e | Pe(Be — Ad)Azy|
(if) kll{g; |Azy| =0

The SQP Broyden, PSB, DFP and BFGS secant methods are known to
satisfy the condition

. |(Bx — A)Axy|
leTO Azl =0, (3.5)

12



hence by Theorem 3.1 and Theorem 3.2 they give g-superlinear convergence
in ¢ and in (z,)). For details see Corollary 5.5 in Fontecilla, Steihaug and
Tapia (1987).

These comments bring to the foreground the following common concern.
Many researchers in the area find it unsettling that in every known situation
where the g-superlinear convergence of = has been established for an SQP
method, it was established by first demonstrating that (3.5) holds. Clearly
(3.5) implies the Boggs-Tolle-Wang condition ((ii) of Theorem 3.2). This
means that we are sacrificing information by using the Boggs-Tolle-Wang
characterization, since we must have more than just g-superlinear conver-
gence in z. Of course, the pertinent issue here is a characterization of condi-
tion (3.5) in terms of the convergence aspects of the SQP method in question.
We find it interesting that such a characterization has not been identified and
yet it can be obtained as a straightforward consequence of Theorem 5.1 of
Fontecilla, Steihaug and Tapia (1987). Specifically, by restricting their the-
orem to the case of SQP and making some rather obvious observations we
obtain the following result.

Theorem 3.3 (Fontecilla-Steihaug-Tapia). For an SQP method the follow-
ing two statements are equivalent:

. |(Be — A)Azy|

i) 1 = 0.
(i) fim [Azy| 0

(ii) (a) {zx} converges q-superlinearly to ¢, and

(b) lim [ | =0.

k—co ’.'Ifk - .'L'*I

We now present several consequences of Theorem 3.1 and Theorem 3.3.
Before we isolated these two theorems we had derived these results using
only the Dennis-Moré characterization. This was a lengthy task. Hence
these consequences also can be viewed as a demonstration that collectively
these theorems offer a powerful analytical tool.

Proposition 3.1 For an SQP method the statement

o e |(Br = AAxy|
(i) Jim, Az

13



or the statement

(i) (a) {Bx} is bounded and

b) 1 =
(®) Jfim A5 =°

implies the statement
(iii) {(zk, Ax)} converges g-superlinearly to (z., \.).

Proof. The proof follows directly from Theorem 3.1. a

We now extend the Boggs-Tolle-Wang characterization of g-superlinear
convergence of {zx} to the common case where it is known that the pair
(z,A) converges g-superlinearly.

Proposition 3.2 For an SQP method assume that {(zk, A\x)} converges g-
superlinearly to (x.,A.). Then the following two statements are equivalent:

(1) {zx} converges q-superlinearly to z..

(ii)

P, (B, — A.) Az,
k—o00 IA;pnkI
whenever {ni} is a sequence of positive integers such that

. |Azn|
Jim NN 0. (3.7

Proof. By Theorem 3.2 (i) implies (ii). Now suppose that
Hlpk(Bk - A*)A:EkI _
k—o0 |A$k|

§>0. (3.8)

Then for some sequence of positive integer {n;}

lim |P'nk(-Bnk - A*)Amnk| —

ko0 |Azn, |

6>0.

It follows that
|(Bn, — Ad)Azy, |

i A,

=6>0.

14



Choosing a subsequence of {n;}, and again calling it {n;}, we have

: I(Bnk B A*)Axnk| Y
klirgo Az | =6>0. (3.9)

From Theorem 3.1 we see that (3.9) implies (3.7); hence (3.6). However (3.6)

and (3.9) are incompatible. It follows that our supposition (3.8) cannot hold

and (ii) of Theorem 3.2 must hold. O
Observe that (ii) vacuously holds if

lA.’L‘kI
> . .
Al >m >0 forallk (3.10)

Hence (3.10) and the g-superlinear convergence of {(zx,\z)} imply the g-
superlinear convergence of {z}.

Proposition 3.3 For an SQP method assume the condition

|z — 2]

T <M< +0 fordlk. (3.11)
[Ae = A
Then the statement
o o |(Br=A)Ax|
(i) ]}Lrg TN = 0 implies the statement

(ii) (a) {zx} converges q-superlinearly to ., and
(b) {Ax} converges q-superlinearly to \,.

Conversely, if instead of (3.11) we assume

|2k — 2]

O<m< ———
A = A

for all k (3.12)

then the statement (ii) implies the statement (i). Consequently assuming
(3.11) and (8.12) we have that (i) is equivalent to (ii).

Proof. Consider the expression

Mot = Al [Aen = A 2 — 2
I)\k_)‘*l I-T»'k_x*l |Ak_/\*l )

(3.13)

15



If (3.11) holds, then Theorem 3.3, statement (i) and (3.13) imply (ii). Now,
if (3.12) holds, then Theorem 3.3, statement (ii) and (3.13) imply (i) holds.
a
We believe that in most cases (i) and (ii) will be equivalent.
The following result does not use Theorems 3.1—3.3.

Proposition 3.4 For an SQP method the statement
(i) (a) {Bx} and {B;'} are bounded and

. Tk — Tx -
(b) lim pYESwis 0 (3.14)

implies the statement

(ii) (a) {zx} converges q-superlinearly to x, and
(b) {Ax} converges q-superlinearly to \,.

Proof. From Theorem 2.1 we see that (i)(a) implies that [Ary1 — Au|/|zx — 2]
is bounded uniformly in k. Hence (i)(b) and (3.13) imply the g-superlinear
convergence of {\;}.

Ae+1 — Ae
Moreover, the fact that |Ary1—A.| = O(|zx—z.|) implies that P = M| =

|Th1 — 24
0(———|””’° il ) So
|Zhsr — ] )
I |:L'k+1 - -7:*|
k—o0 |,’1}k — x*l

=0.

This proves (ii). ]
Observe that the conditions which allow us to establish g-superlinear
convergence of {Ax}, i.e. (3.11) and (3.14) preclude A; = A, an infinite
number of times. Indeed, they do not allow {\;} to converge too fast relative
to {zx}. In Section 5 we will argue that while this restriction may hold most
of the time it is not mathematically realistic.
From Theorem 3.1 we see that the assumption

|Azy|
0<m<
AN

for all k (3.15)

16



is sufficiently strong to make the g-superlinear convergence of {(x,Ax)}
equivalent to the condition

B - *
1B — A)Azi| _ (3.16)

I
kirglo |A,’L’k’
Hence, it must be considered somewhat restrictive. We also believe that the
condition | |
. T — T
lim —— = 17
v w ik (311
used in Proposition 3.4 is restrictive. It is interesting that (3.15) and (3.17)
are incompatible. Specifically, if (3.17) holds and {B:} and {B;'} are
bounded, then from Proposition 3.4 we have that {3} and {\;} converge
g-superlinearly. Hence
lim P12t (3.18)
k—oo |$k - :I:*I
and similarly for {A\;} (see Lemma 8.2.3 of Dennis and Schnabel (1983)). Tt
follows that (3.17) implies

= 1
Pl [AA] 0 (3.19)

and (3.15) cannot hold.

4 Implications of (z,)) on z

Han (1976), (1977), Tapia (1977) and Glad (1978) independently established
local and g-superlinear convergence for the pair (z, \) for various SQP secant
methods as mentioned in Section 1. In general, g-superlinear convergence
for the pair (z, ) only implies r-superlinear convergence for z (or for ).
However, we will now show that for the SQP quasi-Newton method the g-
superlinear convergence of the pair (z,)) always implies at least two-step
g-superlinear convergence for z provided that {B;} and {B;'} are bounded.
The result will follow directly from the following lemma.

Lemma 4.1 Let a > 0, by > 0, ary1 = O(ax) and beyy = O(ar). If
{(ak,br)} converges to 0 q-superlinearly, then the convergence of {ax} to 0 is

17



at least two-step q-superlinear. Moreover

lim 2L _ 0.

koo @p_q

Proof. Let byy1 = Myak. By assumption

Lm M:O
e\ Ta v

Hence
(4.1)
Since ay = O(ak-1) and { My} is bounded, it follows from (4.1) that klim Bkt1 _
—00 A L1
0 and lim 41 = 0. O
k—co ap_q

Theorem 4.1 For an SQP method the statement

(1) (a) {Bi} and {B;'} are bounded and
(b) {(zk, Ax)} converges g-superlinearly to (z., \,)

implies the statement
i) (a) {zx} converges to z, at least two-step q-superlinearly and
A g)\ !
(b) Jim P =Ml

k—co |Il'k_1 - x*l

Proof. Let ay = |y — 2| and by = |A\ — A|. From Theorem 2.1 and
Corollary 2.1 we have

bk+1 = O (ak) and Ar+1 — O (ak).

Therefore from Lemma 4.1 we have (ii). O
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5 Implications of (z,\) and z on A

In this section we establish what we consider to be our main result. We
will show that if we have ¢-superlinear convergence in the pair (z,A) and in
the variable z, then we have g-superlinear or g-sublinear with unbounded ¢,
factor convergence in the multiplier A. The following lemma is a technical
result which will be used later.

Lemma 5.1 Let {z,,} and {\,,} be subsequences of {z1} and {\}. Assume
{B:'} is bounded. If

An = Ax
lim Png = ] _ 0,
k—oo |xnk - $*|
then 4
lim |(I — B’nk—lrnk—l)(xnk—l B .’IZ*)l =1
k=0 Ixnk — 7.
where [y, is defined in Lemma 2.1.
Proof. By Lemma 2.1 we have
Tnp — T — (I — B;kl—lrnk—l)(mnk—l - :l:,,,) — __B---I_Ithk_1 ()‘nk — ’\*) )
|Zn, — . " |, — 2.
(5.1)
|)‘nk _ ’\*l

By assumption lim = 0 and {B;'} is bounded. Therefore we

k—o0 Ixnk - x*l

lim IB;kl—Ithk“‘l(Ank B ’\*)l
k—oo lxnk - Ilt,.,l

It follows from (5.1) that

have

=0.

|mﬂk — Lx — (I I B;kl—-lrnk—l)(xnk—l — IL'*)I

lim =0.
koo |x'"'k - :I}*l
Therefore
hm |(I - B;kl—lrnk—l)(xnk—l _ :E*)| =1. 0
k—oo |$nk - ‘T*l
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Lemma 5.2 Let Qrvy = wy where {Qx} is a sequence of n X m matrices
with full column rank and {vi} is a sequence of vectors. Assume vy # 0 for
k sufficiently large and {Qi} is bounded and the limit points of {Qi} have
full column rank. If {wi} converges to 0 g-superlinearly then {v;} converges
to 0 q-superlinearly.

Proof. By the assumption that {Q;} is bounded and each {Q;} is of full
column rank and the limit points of {Q;} have full column rank we have

m|vg| < Jwi| < Mlvg|

for some positive constants m and M independent of k. Therefore the fact
that {wi} converges to 0 g-superlinearly will imply {vx} converges to 0 g-
superlinearly. a

Theorem 5.1 If {(zx, Ar)} and {zx} converge to (z.,\.) and =, q-superlinearly
and {By} and {B;'} are bounded, then either

(i) lim Pipr = A

=0 (i.e. {M\:} converges g-superlinearly)
k—oc0 |/\k — /\*I
r

o
A = A

(ii) klim De ] oo (i.e. {Ax} converges g-sublinearly with
—o0 k= Ax

unbounded ¢, factor).

Ake1 — A

) . +1

Moreover, in both cases lim 1——*| =0.
k—o0 |wk—l - x*l

Proof. If [Ak41 — Al = O(|Ax — A.|) is not true, then
T k= el
k—oco IA’C — /\*| ’

and case (ii) of the theorem holds.
Now suppose that |Ar41 — M| = O(|Ax — A.). By hypothesis we have

| Ak41 — Al [(Zkt1 = Tuy Akt — A
k(e — Tuy Ak — )|

erl|zr — za] + A — A,

IAIN A
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where {c;} converges to 0. It follows that

[Ae41 = A ( |$k—'$*|)
—_—— <l 4+ —]. 5.2
he—a] =4\ RN 52)
Suppose
_ —
Tl =Ml _ oo (5.3)

k00 |/\k —/\*l -

Then there exists a sequence of positive integers {n;} such that

A = A

1 =4.
£ oy — M|
Case (i) If

T Iwn —517*'

1 L R &

kLI'g) I/\nk _/\*| <o,

then from (5.2) we have
I’\nk+1 - /\*I _

lim 0.

koo IAnk - ’\*I -
However, this contradicts (5.3).

Case(il) If
- |~77n,c - IL'*I .
0 Py 0]~

then there exists a subsequence of {ny}, say {m4}, such that

P —
lim 2me = AL (5.4)
k—o0 |‘77Tnk - :ZZ*I

From (5.4) and the assumption that |Ar11 — A| = O(|Ax — A.|) we have
lim M =0. (5.5)
k—o00 |$'mk — :r*l

Now, since {z}} converges ¢-superlinearly we have from (5.5) and (3.18)

. |Azy,|
1 -
koo [ Ay | OF

(5.6)
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Theorem 3.1, (5.6) and the fact that we are assuming that {(zx, A\x)} con-
verges g-superlinearly imply

m |(Bmy — Ad)Azp, | _

k—o0 |Aa)mk I

0. (5.7)

Since {T'+} defined in Lemma 5.1 converges to A, and {zx} converges g-
superlinearly (see (3.13))

hm |(Bmk - ka)(xmk _ x*)'

k—co Ixmk - :E*I

=0. (5.8)

Let W41 = Thy1 — T — Bk—l(Bk — Fk)(zk — :IZ*) and Qk = —Bk_Ith. Then
from Lemma 2.1 we have

Wt = Qi(Aks1 — Ad) - (5.9)
Now,
|wea| _  |%ker — 24— By'(Br — T) (2 — 2.)|
Iwk| |$k — Ty — Bk__ll (Bk—l - Fk—l)(xk—l - SU*)I

_ Az + Bi'T(zx — )|
|ACIZk_1 + Bk__llrk—l (wk—l - .1'*)| .

Since {z1} converges to z. g-superlinearly we have

lim Iwmk+1| = |_(lBr7lkak - I)(xmk - IL'*)|
k=00 [wp, | k=oo [(By, 1Pmy—1 = I)(@mp—1 — z4)|
(B3 Ty 1) (@ —2)| (5.10)
- I ]xmk—x.l
= 1m

koo |(B;,;_1r,,.k_1-1)(zmk_1~z.)|

[€m) —]

From (5.4) and Lemma 5.1 we know that the denominator in (5.10) converges
to 1. It follows from (5.8) and the fact that {B;'} is bounded and (5.10)
that

k—o00 iwmkl
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Since {By} is bounded and Vh, has full rank the limit points of @ defined
by (5.9) have full rank. It follows from Lemma 5.2 and (5.9) that

. I)‘mk+l - A"‘I _
kll’r?o |’\‘mk - ’\*l B

0.

This contradicts (5.3).

Both case (i) and case (ii) lead to a contradiction. Hence we must have
6 = 0 and it follows that

lim et = 2|

=0
k—o0 |Ak——A*l ’

i.e. case (i) of the theorem holds. The last statement of the theorem follows
from Theorem 4.1. O

Let us end this section by collecting all our results and stating them for
the popular SQP secant methods.

Theorem 5.2 Consider the SQP Broyden, PSB, DFP or BFGS secant method.
In the case of DFP and BFGS assume that the matriz A, is positive definite.
Then there exist positive numbers € and § such that whenever |xo — | < €
and |Bo— A.| < 6 the iteration sequence (z, Ar) is well-defined and converges
to (z.,A.). In addition we have

(i) {(zk,Ax)} converges to (z.,)\.) g-superlinearly,

(i) {zx} converges to x. q-superlinearly,

(iif) Jim L= Ml

0,
k—+00 |.’17k — ,’1:*|

(iv) {M} converges to A, g-superlinearly or g-sublinearly with un-
bounded q; factor.

Proof. It is known that these secant methods satisfy bounded deterioration
and condition (3.5). The bounded deterioration implies that {B;} and {B;!}
are bounded. For details see Theorem 3.1, Proposition 4.2 and Corollary 5.5
of Fontecilla, Steihaug and Tapia (1987). The theorem now follows from
Theorem 3.1, Theorem 3.3, and Theorem 5.1. a
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6 Summary and Concluding Remarks

In Section 3 we exhibited three important characterization theorems and
demonstrated that collectively they offer a very powerful analytic tool for
studying the convergence properties of SQP methods. We derived several
conditions which imply g¢-superlinear convergence in (z, A), z and A for an
SQP method. We also noted that in essentially all applications, the Boggs-
Tolle-Wang condition for g-superlinear convergence in z has been established
by first showing that condition (3.5) holds. Moreover, some of the theory pre-
sented in this paper implies that condition (3.5) should be expected to hold.
Consequently, we have argued that the Fontecilla-Steihaug-Tapia theorem
(Theorem 3.3) which offers a characterization of condition (3.5) is proba-
bly a more useful tool than the Boggs-Tolle-Wang characterization theorem
(Theorem 3.2).

In general if we have g-superlinear convergence in the pair (z,)) we only
have r-superlinear convergence in the variable x and the multiplier A. How-
ever, Theorem 4.1 shows that if {B;} and {B;'} are bounded, then for an
SQP method we always have at least two-step g-superlinear convergence in
the variable  whenever we have g-superlinear convergence in the pair (z, A).

In Section 5 we showed that the convergence for the multiplier A was
either g-superlinear or g-sublinear with unbounded ¢; factor whenever the
convergence for the pair (z,)) and the variable x were g-superlinear. We
consider this theorem to be the main contribution of the paper. Initially we
found this result to be somewhat of a surprise. Indeed, authors have assumed
that this convergence is g-superlinear or at least g-linear. However, after
studying the mechanics of the SQP method we have convinced ourselves that
this result should have been expected. Let us now present some discussion
along this line.

A highly desirable feature of an iterative procedure is the property that
should an iterate happen to coincide with a solution, then the subsequent
iterate is also equal to the solution. Clearly, an iterative procedure which
lacks this fundamental property cannot have good theoretical g-convergence
behavior. The error could be zero at one iteration and nonzero in the subse-
quent iteration. This implies that in any analysis which considers the worst
case, the ¢;-factor would be unbounded. Even if the error were not zero
at any iteration it could be arbitrarily small and one would expect similar
statements to hold.
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Let us now look at the SQP iterative procedure in terms of (z,)),  and
A from this point of view. It follows that if z; = z., then Vi = =VhA,
and hy = 0; so from (2.1) Agy; = A and from (2.2) zk41 = z4. Therefore
the establishment of good g¢-convergence behavior in (z,)) and in z for the
SQP method should not be viewed as a complete surprise.

From (2.1) we see that A;1; does not depend explicitly on A\z. We should
not expect to have Ay = A, whenever A\, = ),. Moreover, in most cases
there will exist a manifold € IR™ of dimension n — m such that Ak+1 = A,
whenever zx € Q. It follows that in the worst-case analysis given by Theo-
rem 5.1 the unbounded ¢,-factor situation is to be expected and cannot be
removed from the theorem. The surprise is that Theorem 5.1 says that if
the g-convergence behavior in A is not arbitrarily bad (unbounded q1-factor),
then it is essentially optimal (g;-factor of zero). It is interesting that both
notions are norm independent. We believe that while our numerical experi-
ence dictates that in most cases we should expect g-superlinear convergence
in A, Theorem 5.1 is actually sharp. This means that while the g-superlinear
convergence of {Ax} is likely in any given computation, assumptions which
imply it are mathematically restrictive.

It is interesting to point out that the r-convergence in ) is always su-
perlinear and the unbounded ¢;-factor occurs because the estimate of the
multiplier is exceptionally good an infinite number of times.

It is also interesting to point out that in the modified SQP method studied
by Tapia and Whitley (1988) if it happens that A, = ., then the algorithm
will converge in the subsequent iteration, i.e., (Zx41, Aet1) = (a, Ax). This
is due to the very special structure of the eigenvalue problem. Hence it
is not unreasonable that they were able to establish the same surprising ¢-
convergence rate of 14+/2 for the pair (z, A), the variable z and the multiplier
A

Theorem 5.2 is an up-to-date account of the convergence properties of
the SQP Broyden, PSB, DFP and BFGS secant methods. Since these meth-
ods satisfy condition (3.5), from Proposition 3.3 we should expect them to
give g-superlinear convergence in (z,\), £ and A\. Theorem 5.2 says that in
the unusual case that we do not have g-superlinear convergence in A, i.e.
E—M = oo, we will still have lim I—)‘k—H_—/\*——'
k—oo |/\k — /\*I k—o0 I:Ijk — .’Ij*l
though it is possible that the A-sequence may exhibit bad g-behavior its con-
vergence will be extremely fast. We must conclude that g-convergence is an

= 0. Hence, even
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inappropriate and pessimistic measure of convergence for the \-sequence.
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